Ultimele subiecte
» Legi de conservare
Scris de Vizitator Ieri la 23:16

» Lucrul mecanic - definitie si exemple
Scris de virgil_48 Ieri la 19:06

» Experimente interesante
Scris de gafiteanu Ieri la 03:08

» [rezolvat]Electricitate si magnetism - Macara magnetica.
Scris de scanteitudorel Dum 22 Oct 2017, 07:22

» Critica atractiei gravitationale
Scris de virgil_48 Joi 19 Oct 2017, 20:46

» Mecanica FOIP si actiunea acestuia asupra corpurilor.(secțiunea 4)
Scris de virgil_48 Joi 19 Oct 2017, 12:11

» Bancuri......
Scris de gafiteanu Mier 11 Oct 2017, 05:26

» Ce este hipocosmosul ?
Scris de virgil Joi 05 Oct 2017, 20:22

» Laborator-sa construim impreuna
Scris de gafiteanu Lun 02 Oct 2017, 01:51

» Diverse probleme tehnice.
Scris de scanteitudorel Vin 29 Sept 2017, 12:39

» Acad.Dr. Leon Danila despre vaccin.
Scris de virgil_48 Mier 27 Sept 2017, 18:31

» Despre ticalosul moderator eugeniu. Geniul teslan al internetului, bobinatorul shef, liniorul neinteles...
Scris de virgil_48 Mar 26 Sept 2017, 08:58

» Miscare versus actiune
Scris de virgil Lun 25 Sept 2017, 06:55

» Pamantul Plat - dovezi, fotografii
Scris de silviu11 Vin 15 Sept 2017, 21:35

» Transilvania-pamant stramosesc
Scris de virgil_48 Mier 13 Sept 2017, 07:29

» Influenta constiintei asupra double-slit experimentului confirmata de un nou experiment
Scris de gafiteanu Mar 12 Sept 2017, 23:45

» Romanii si stiinta
Scris de gafiteanu Mar 12 Sept 2017, 07:29

» World Trade Center
Scris de gafiteanu Lun 11 Sept 2017, 02:04

» Eterul, eterul
Scris de negativ Dum 10 Sept 2017, 18:04

» Ce este FOIP?
Scris de virgil_48 Mier 06 Sept 2017, 22:30

» Borduri
Scris de gafiteanu Mar 05 Sept 2017, 12:40

» The Emergent Structure of Consciousness - articol propriu
Scris de gafiteanu Dum 03 Sept 2017, 12:10

» Banări și debanări recente
Scris de virgil Lun 28 Aug 2017, 17:03

» Topic deschis de Pacaliciul
Scris de gafiteanu Lun 28 Aug 2017, 11:57

» Despre ELI-NP
Scris de gafiteanu Dum 27 Aug 2017, 21:23

» Despre ecuațiile lui Maxwell
Scris de negativ Dum 27 Aug 2017, 14:32

» O Carte Elicoidala cu Fizica Dreapta
Scris de gafiteanu Sam 26 Aug 2017, 04:21

» O carte cu Fizică elicoidală?
Scris de Abel Cavași Vin 25 Aug 2017, 09:17

» Eclipsa de Soare.
Scris de virgil Mier 23 Aug 2017, 06:53

» Bubuitura de la Galati
Scris de gafiteanu Vin 18 Aug 2017, 13:24

Top postatori
virgil (8295)
 
CAdi (7384)
 
Abel Cavași (6434)
 
gafiteanu (5653)
 
Razvan (5565)
 
virgil_48 (5216)
 
Pacalici (5185)
 
curiosul (4738)
 
scanteitudorel (3672)
 
omuldinluna (2728)
 

Cei care creeaza cel mai des subiecte noi
Abel Cavași
 
Pacalici
 
curiosul
 
CAdi
 
Razvan
 
Dacu
 
meteor
 
virgil
 
scanteitudorel
 
WoodyCAD
 

Cei mai activi postatori ai saptamanii
gafiteanu
 
virgil_48
 
Abel Cavași
 

Flux RSS


Yahoo! 
MSN 
AOL 
Netvibes 
Bloglines 


Spune și altora
Cine este conectat?
In total sunt 5 utilizatori conectati: 0 Inregistrati, 0 Invizibil si 5 Vizitatori :: 1 Motor de cautare

Nici unul

Recordul de utilizatori conectati a fost de 49, Dum 20 Mar 2011, 14:29

Teoremele de incompletitudine ale lui Godel

Vezi subiectul anterior Vezi subiectul urmator In jos

Teoremele de incompletitudine ale lui Godel

Mesaj Scris de negativ la data de Vin 15 Iul 2016, 08:47

În cursul demersului meu de a creiona un sistem care sa elimine axiomele din fizica si matematica (grea intreprindere !), am ajuns la critica teoremelor de incompletitudine ale lui Godel.
Pentru asta, am nevoie si de parerea unora care folosesc notiunile cu preponderenta in limba engleza, pentru a putea intelege mai bine subiectul din perspectiva celor ce opereaza cu el, pentru a face o comparatie cu pozitia mea privitoare la acesta.
Astfel, eu am tradus cele doua teoreme dupa cum urmeaza:
Teorema 1 : (EN)  "Any consistent formal system F within which a certain amount of elementary arithmetic can be carried out is incomplete; i.e., there are statements of the language of F which can neither be proved nor disproved in F." , pe care am tradus-o astfel :
Teorema 1 : (RO) "Orice sistem formal consistent F (propoziții în limbaj formal ce constituie un sistem axiomatic) în interiorul căreia există o cantitate certă de elemente aritmetice, poate fi considerată incompletă, adică sunt propoziții ale limbajului F, care nu pot fi nici demonstrate nici nedemonstrate în interiorul sistemului F."
Teorema 2 : (EN) "Assume F is a consistent formalized system which contains elementary arithmetic. Then F⊬Cons(F)." , pe care am tradus-o ca :
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conține elemente de aritmetică elementară, atunci nu se poate demonstra consistența sa. F⊬Cons(F)."
Ce ma intereseaza sa stiu , este daca mi-au scapat nuante subtile ale limbii pe care sa le fi interpretat incorect !
Ma mai intereseaza care ar fi diferentele dintre cele doua, privitoare la domeniile de definire ale premiselor si rezultatelor.

_________________
N∃GATIV
avatar
negativ
Foarte activ
Foarte activ

Se încadrează în topic :
6 / 106 / 10
Demonstrează ce spune :
9 / 109 / 10
Răspunde la întrebări :
10 / 1010 / 10
Se exprimă clar :
7 / 107 / 10
Binevoitor :
10 / 1010 / 10
Disciplinat :
10 / 1010 / 10
Mulțumit de forum :
10 / 1010 / 10
Experimentator<Teoretician :
10 / 1010 / 10
Numarul mesajelor : 2500
Puncte : 11363
Reputație comunitate : 303
Reputație de la fondator : 54
Mesaj de la fondator : Utilizator apreciat.

http://www.ubicuum.ro

Sus In jos

Re: Teoremele de incompletitudine ale lui Godel

Mesaj Scris de curiosul la data de Vin 15 Iul 2016, 18:36

Scuză-mi intervenția, poate pare un pic nelalocul ei și nu are legătură cu ceea ce urmărești tu.
În primul rând, în subiectul acesta vrei să-ți corectezi engleza sau să  verifici eventualele erori de raționament ale incompletitudinii lui Godel ?
Il lași pe Einstein și-l iei pe Godel la criticat ?
În fine, am spus asta pentru că reiese clar faptul că tot ai ceva cu aștia care și-au lăsat amprenta în istoria știinției.
Probabil că îți dorești același lucru, iar incapacitatatea ta se transformă în răzvrătire și critică.
Nu știu...zic și eu...

Mai departe, ceea ce mă interesează să punctez.

În cursul demersului meu de a creiona un sistem care sa elimine axiomele din fizica si matematica (grea intreprindere !), am ajuns la critica teoremelor de incompletitudine ale lui Godel.

Bănuiesc că tu vrei să elimini axiomele de care vorbești pentru că folosindu-le pe acestea existente nu reușești, matematic, să reproduci complet realitatea fizică.

Probabil că tu te gândești, așa cum ai mai și spus pe alocuri, că formulând un alt sistem prin care interpretăm matematic realitatea, acela va fi capabil să o reproducă complet, până în cele mai mici detalii.

Aceasta nu poate fi adevărat, din punctul meu de vedere.
Pentru că acel nou sistem, chiar dacă diferit, va fi tot un sistem formal care va fi la rândul său incomplet.

Incompletitudinea lui Godel generalizează situația și funcționează pentru orice tip de sistem bazat pe axiome, sau altfel spus bazat pe un set de reguli considerate adevărate, deși nu pot fi demonstrate.

Încercând să construiești un nou sistem, de la zero, arhitectura lui va fi identică cu cea actuală.
Este absolut necesară fundamentarea sistemului pe un set de reguli, pe baza cărora să demonstrezi ce-ți mai trece prin cap ulterior.

Aspectul cheie din incompletitudinea lui Godel este acest set de reguli ale sistemului.
Ori în orice alt mod ai încerca să definești un sistem el va fi construit pe reguli considerate adevărate, dar imposibil de demonstrat.

Însăși ultima ta propoziție vorbește despre faptul că inconsistența se datorează fundamentului nedemonstrabil.
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conține elemente de aritmetică elementară, atunci nu se poate demonstra consistența sa.
Pentru că este imposibil de demonstrat că nu se poate demonstra.
Ca să arăți că nu se poate demonstra este echivalent cu demonstrația însăși a valorii de adevăr.

curiosul
Foarte activ
Foarte activ

Se încadrează în topic :
10 / 1010 / 10
Demonstrează ce spune :
10 / 1010 / 10
Răspunde la întrebări :
10 / 1010 / 10
Se exprimă clar :
10 / 1010 / 10
Binevoitor :
9 / 109 / 10
Disciplinat :
10 / 1010 / 10
Mulțumit de forum :
10 / 1010 / 10
Experimentator<Teoretician :
10 / 1010 / 10
Numarul mesajelor : 4738
Puncte : 27739
Reputație comunitate : 1477
Reputație de la fondator : 59
Mesaj de la fondator : Utilizator extrem de apreciat care se implică bine în multe subiecte. Citesc cu bucurie ceea ce scrie.

Sus In jos

Re: Teoremele de incompletitudine ale lui Godel

Mesaj Scris de negativ la data de Sam 16 Iul 2016, 16:19

curiosul a scris:Scuză-mi intervenția, poate pare un pic nelalocul ei și nu are legătură cu ceea ce urmărești tu.
În primul rând, în subiectul acesta vrei să-ți corectezi engleza sau să  verifici eventualele erori de raționament ale incompletitudinii lui Godel ?
Si una si alta.
curiosul a scris:Il lași pe Einstein și-l iei pe Godel la criticat ?
În fine, am spus asta pentru că reiese clar faptul că tot ai ceva cu aștia care și-au lăsat amprenta în istoria știinției.
Probabil că îți dorești același lucru, iar incapacitatatea ta se transformă în răzvrătire și critică.
Nu știu...zic și eu...
Exact asa. Cu Einstein m-am dumirit - aritmetica elementara. Godel are locul lui, dar nu asa de mare cum se presupune.
Amprenta pe care au last-o astia in stiinta este doar partiala. Daca eram in incapacitate de a-i critica, n-o mai faceam. Repet : nu sunt WoodyCAD ; stiu exact care-mi sunt limitele, oricum peste ale unora ce au gandit acum 100 de ani, din lipsa de informatie. Dar nici pâna la nivelul la care as fi dorit sa-mi fie limitele. Oricum, o contributie tot am sa aduc.

_________________
N∃GATIV
avatar
negativ
Foarte activ
Foarte activ

Se încadrează în topic :
6 / 106 / 10
Demonstrează ce spune :
9 / 109 / 10
Răspunde la întrebări :
10 / 1010 / 10
Se exprimă clar :
7 / 107 / 10
Binevoitor :
10 / 1010 / 10
Disciplinat :
10 / 1010 / 10
Mulțumit de forum :
10 / 1010 / 10
Experimentator<Teoretician :
10 / 1010 / 10
Numarul mesajelor : 2500
Puncte : 11363
Reputație comunitate : 303
Reputație de la fondator : 54
Mesaj de la fondator : Utilizator apreciat.

http://www.ubicuum.ro

Sus In jos

Re: Teoremele de incompletitudine ale lui Godel

Mesaj Scris de negativ la data de Sam 16 Iul 2016, 16:52

curiosul a scris:Bănuiesc că tu vrei să elimini axiomele de care vorbești pentru că folosindu-le pe acestea existente nu reușești, matematic, să reproduci complet realitatea fizică.
Cam asa ceva.
curiosul a scris:Probabil că tu te gândești, așa cum ai mai și spus pe alocuri, că formulând un alt sistem prin care interpretăm matematic realitatea, acela va fi capabil să o reproducă complet, până în cele mai mici detalii.
Aceasta nu poate fi adevărat, din punctul meu de vedere.
Pentru că acel nou sistem, chiar dacă diferit, va fi tot un sistem formal care va fi la rândul său incomplet.
De ce nu poate fi adevarat ? mi se pare absurd. Tu pornesti de la ideea de a folosi aceleasi elemente ale sistemului. Nu te-ai gandit ca daca sunt ceva mai multe in realitate, problema se schimba si poate fi construit un sistem consistent ?
curiosul a scris:Incompletitudinea lui Godel generalizează situația și funcționează pentru orice tip de sistem bazat pe axiome, sau altfel spus bazat pe un set de reguli considerate adevărate, deși nu pot fi demonstrate.
Încercând să construiești un nou sistem, de la zero, arhitectura lui va fi identică cu cea actuală.
Este absolut necesară fundamentarea sistemului pe un set de reguli, pe baza cărora să demonstrezi ce-ți mai trece prin cap ulterior.
Da, pe reguli ce se determina reciproc, nu pe axiome. Axiomele nu pot fi determinate. Ideea nu este de a construi un sistem de la zero, ci de a-l completa pe cel actual. Nu vreau sa construiesc alt sistem bazat tot pe axiome. N-as rezolva nimic. Dupa ce-l rezolv pe Godel, trec iar la Elementele lui Euclid, pentru a le pune in ordine. Sa nu crezi ca ma screm atata chiar pentru un fleac. Nu vreau sa-mi iau titlul de doctor pe aritmetica. Oricum nu as mai avea ce face cu el acum, (sunt prea batrân), dar m-am gandit ca o noua orientare ar folosi si altora (si ma gandesc la noile generatii cand zic asta).
curiosul a scris:Aspectul cheie din incompletitudinea lui Godel este acest set de reguli ale sistemului.
Ori în orice alt mod ai încerca să definești un sistem el va fi construit pe reguli considerate adevărate, dar imposibil de demonstrat.
Asta tine de principiul incertitudinii ce a fost enuntat de Heisenberg ca o regula, lucru ce a fost demonstrat mai tarziu prin 1995 de Folland și Sitaram, dar nu întâmplator a fost ridicat la rang de principiu. Din perspectiva sistemului meu, toate domeniile de demonstrabilitate sunt disponibile, împreuna cu regulile lor, deci demonstrabile.
curiosul a scris:Însăși ultima ta propoziție vorbește despre faptul că inconsistența se datorează fundamentului nedemonstrabil.
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conține elemente de aritmetică elementară, atunci nu se poate demonstra consistența sa.
Pentru că este imposibil de demonstrat că nu se poate demonstra.
Ca să arăți că nu se poate demonstra este echivalent cu demonstrația însăși a valorii de adevăr.
Inconsistenta tine de posibilitatea de demonstrare, drept pentru care apare notiunea de domeniu de demonstrabilitate. Eroarea de judecata lui Godel a fost " conține elemente de aritmetică elementară", pe cand trebuia sa fie " conține numai elemente de aritmetică elementară".
De-asta am intrebat de nuantele de interpretare ale limbii engleze.

_________________
N∃GATIV
avatar
negativ
Foarte activ
Foarte activ

Se încadrează în topic :
6 / 106 / 10
Demonstrează ce spune :
9 / 109 / 10
Răspunde la întrebări :
10 / 1010 / 10
Se exprimă clar :
7 / 107 / 10
Binevoitor :
10 / 1010 / 10
Disciplinat :
10 / 1010 / 10
Mulțumit de forum :
10 / 1010 / 10
Experimentator<Teoretician :
10 / 1010 / 10
Numarul mesajelor : 2500
Puncte : 11363
Reputație comunitate : 303
Reputație de la fondator : 54
Mesaj de la fondator : Utilizator apreciat.

http://www.ubicuum.ro

Sus In jos

Re: Teoremele de incompletitudine ale lui Godel

Mesaj Scris de Continut sponsorizat


Continut sponsorizat


Sus In jos

Vezi subiectul anterior Vezi subiectul urmator Sus


 
Permisiunile acestui forum:
Nu puteti raspunde la subiectele acestui forum