Ultimele subiecte
» Teoria grupurilor cu forte neconservative controlate 99.99%
Scris de virgil_48 Astazi la 06:58

» Lucrul mecanic - definitie si exemple (Secțiunea 2)
Scris de Abel Cavași Astazi la 06:01

» Sandokan
Scris de scanteitudorel Ieri la 19:48

» Despre ecuațiile lui Maxwell
Scris de virgil_48 Ieri la 19:45

» 50 de ani de cand pamantenii au pus piciorul pe Luna ?
Scris de virgil_48 Lun 22 Iul 2019, 07:51

» Legi de conservare (2)
Scris de Vizitator Dum 21 Iul 2019, 21:06

» Aether Pressure (II) - Inexistenta atractiei gravitationale
Scris de eugen Dum 21 Iul 2019, 13:38

» Entitatea excentricitatii permanente *CAPTIVA* intr-un cerc
Scris de isabau Sam 20 Iul 2019, 01:15

» TEORIA CONSPIRATIEI NU ESTE UN MIT...
Scris de virgil_48 Vin 19 Iul 2019, 08:02

» Am fost ori ba pe Luna ?
Scris de gafiteanu Vin 19 Iul 2019, 05:34

» Bancuri......
Scris de virgil_48 Mier 17 Iul 2019, 23:29

» Perpetuum Mobile in magnetism
Scris de scanteitudorel Dum 14 Iul 2019, 14:50

» Cartea mea despre constiinta "I Am" publicata pe amazon
Scris de gafiteanu Vin 12 Iul 2019, 07:39

» Frustrați intelectuali
Scris de virgil_48 Mier 10 Iul 2019, 19:34

» Despre viitor...
Scris de Abel Cavași Mier 10 Iul 2019, 18:13

» Sabloanele mele LaTex
Scris de virgil_48 Mier 10 Iul 2019, 09:11

» Aritmetica simpla
Scris de mm Mier 10 Iul 2019, 05:59

» Mecanica FOIP si actiunea acestuia asupra corpurilor.(secțiunea 4)
Scris de virgil_48 Mar 09 Iul 2019, 07:31

» La frontierele cunoașterii
Scris de virgil Sam 06 Iul 2019, 07:31

» Grupuri cu forte neconservative
Scris de isabau Mier 03 Iul 2019, 00:32

» Alcoolul și efectele sale
Scris de curiosul Dum 30 Iun 2019, 22:13

» Cum explicăm atracția magnetică?
Scris de curiosul Dum 30 Iun 2019, 14:57

» Fenomene asimetrice
Scris de eugen Sam 29 Iun 2019, 22:56

» Femei. În funcțiile de conducere?
Scris de virgil_48 Sam 29 Iun 2019, 07:51

» Perpetuum mobile de speta intai N + 1’
Scris de isabau Vin 28 Iun 2019, 23:59

» De ce se aude tare?
Scris de scanteitudorel Lun 24 Iun 2019, 19:26

» Conferinte despre constiinta
Scris de curiosul Lun 24 Iun 2019, 19:15

» Articolul meu "The Quale of Time" publicat in MDPI Philosophies
Scris de curiosul Lun 24 Iun 2019, 19:09

» Magnetonul Bohr-Procopiu, si campul magnetic.
Scris de virgil Vin 21 Iun 2019, 07:35

» Critica atractiei gravitationale
Scris de virgil_48 Mier 19 Iun 2019, 19:44

Top postatori
virgil (9386)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
CAdi (7935)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Abel Cavași (6903)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
virgil_48 (6717)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
gafiteanu (6563)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Razvan (5717)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Pacalici (5571)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
curiosul (5405)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
scanteitudorel (4689)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
negativ (2970)
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 

Cei care creeaza cel mai des subiecte noi
Pacalici
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Abel Cavași
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
curiosul
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
CAdi
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Razvan
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Dacu
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
meteor
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
scanteitudorel
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
virgil
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
gafiteanu
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 

Cei mai activi postatori ai lunii
virgil_48
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Abel Cavași
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
scanteitudorel
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
gafiteanu
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
virgil
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
curiosul
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
isabau
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
negativ
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
mm
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
eugen
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 

Cei mai activi postatori ai saptamanii
virgil_48
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
Abel Cavași
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
scanteitudorel
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
isabau
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
virgil
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 
mm
A doua conjectură Hardy-Littlewood Vote_lcapA doua conjectură Hardy-Littlewood Voting_barA doua conjectură Hardy-Littlewood Vote_rcap 

Flux RSS


Yahoo! 
MSN 
AOL 
Netvibes 
Bloglines 


Spune și altora
Cine este conectat?
In total sunt 7 utilizatori conectati: 1 Inregistrati, 0 Invizibil si 6 Vizitatori

virgil_48

Recordul de utilizatori conectati a fost de 49, Dum 20 Mar 2011, 14:29

A doua conjectură Hardy-Littlewood

In jos

A doua conjectură Hardy-Littlewood Empty A doua conjectură Hardy-Littlewood

Mesaj Scris de curiosul la data de Vin 13 Ian 2017, 14:51

Deși se consideră ca fiind neadevărată, sau cel puțin inconsistentă cu prima conjectură Hardy-Littlewood, această a doua conjectură H-L este foarte probabil adevărată.
O scurtă descriere, în engleză din păcate, găsiți pe wikipedia aici.
Aceasta presupune că inegalitatea este adevărată, unde reprezintă notațiile prin care se înțelege numărul de numere prime mai mici sau egale cu x, y și respectiv (x+y).

În analiza de mai jos este dezvoltat raționamentul din care reiese concluzia la care am ajuns eu și anume, conjectura este foarte probabil adevărată.

1.  Dacă un număr m, mai mic ca n, nu este prim, atunci el este obligatoriu divizibil cu cel puțin un număr prim mai mic sau egal cu .

Evident, presupunând că acel număr m nu este prim și în același timp nedivizibil cu niciun număr prim mai mic sau egal cu , atunci el va fi divizibil cu cel puțin două numere prime p,q mai mari decât , ceea ce ar însemna că pq>n și evident m ar fi mai mare ca n, iar asta este imposibil, de unde rezultă că m trebuie să fie obligatoriu divizibil cu cel puțin un număr prim mai mic sau egal cu .

2. În intervalul (0,k) sunt cel puțin la fel de multe numere prime ca și în intervalul (y, y+k).

Evident, în cele două intervale sunt același număr de numere consecutive, cu diferența că în intervalul (0,k) numerele nonprime sunt divizibile cu cel puțin un număr prim mai mic sau egal cu , în timp ce în al doilea interval, în factorizarea numerelor compuse apar numere prime mai mici sau egale cu așa cum rezultă din 1.

Aceasta înseamnă că în cele două intervale identice ca și număr de numere consecutive, există un număr diferit de numere prime care pot divide numerele nonprime, dacă y este suficient de mare.
Altfel spus, în cele două intervale există același număr de numere divizibile cu 2, același număr de numere divizibile cu 3,..., același număr de numere divizibile cu p prim mai mic sau egale cu , însă în intervalul (y, y+k) mai pot apărea numere divizibile cu un număr prim cuprins între și , de unde ar rezulta că în intervalul (y, y+k) ar putea fi mai puține numere prime decât în intervalul (0,k).

3. Din 2. rezultă faptul că
Înlocuind x=y+k,  inegalitatea este foarte probabil adevărată pentru oricare x, y.

4. Rearanjând ultima inegalitate sub forma și notănd x-y=z și implicit x=z+y ajungem la adică exact ceea ce ar trebui demonstrat pentru a valida conjectura, însă trebuie o demonstrație mai riguroasă pentru punctul 2.

Vreo idee?

curiosul
Foarte activ
Foarte activ

Mulțumit de forum :
A doua conjectură Hardy-Littlewood Left_bar_bleue10 / 1010 / 10A doua conjectură Hardy-Littlewood Right_bar_bleue
Numarul mesajelor : 5405
Puncte : 31658
Data de inscriere : 22/03/2011

Sus In jos

A doua conjectură Hardy-Littlewood Empty Re: A doua conjectură Hardy-Littlewood

Mesaj Scris de Hercules la data de Dum 15 Ian 2017, 12:03

A doua conjectură Hardy-Littlewood A031a707fd52
PI(x) < PI(x+k) < PI(x)+PI(k)
De la un nr oarecare PI(x) aproximeaza(aproximatiile se reduc cu atit mai mult cu cit dam valori mai mari) o functie concava crescatoare, la fel si PI(x+k) la fel si PI(x)+PI(k). Nici una din cele 3 functii nu se intersecteaza dupa un anumit numar in sus, deci e deajuns sa dam 2,3 exemple sa le comparam si imedeat deci sa aflam care functie e mai mare sau mai mica ca cealalta.

Hercules
Statornic
Statornic

Mulțumit de forum :
A doua conjectură Hardy-Littlewood Left_bar_bleue10 / 1010 / 10A doua conjectură Hardy-Littlewood Right_bar_bleue
Numarul mesajelor : 52
Puncte : 3381
Data de inscriere : 20/07/2016
Obiective curente : Acum mă preocupă următoarele:-1)...-2)...

Sus In jos

A doua conjectură Hardy-Littlewood Empty Re: A doua conjectură Hardy-Littlewood

Mesaj Scris de curiosul la data de Dum 15 Ian 2017, 12:10

Da Hercules, eu înțeleg cam ce vrei să spui.
Oricum, o să revin zilele astea cu un raționament mult mai plauzibil și mai detaliat, care validează conjectura.

Discutăm ulterior.

curiosul
Foarte activ
Foarte activ

Mulțumit de forum :
A doua conjectură Hardy-Littlewood Left_bar_bleue10 / 1010 / 10A doua conjectură Hardy-Littlewood Right_bar_bleue
Numarul mesajelor : 5405
Puncte : 31658
Data de inscriere : 22/03/2011

Sus In jos

A doua conjectură Hardy-Littlewood Empty Re: A doua conjectură Hardy-Littlewood

Mesaj Scris de curiosul la data de Dum 15 Ian 2017, 21:02

Interesant, Hercules, este că oricare una dintre cele două relații de mai jos este adevărată o implică pe cealaltă :





unde este al i-lea nr prim.

curiosul
Foarte activ
Foarte activ

Mulțumit de forum :
A doua conjectură Hardy-Littlewood Left_bar_bleue10 / 1010 / 10A doua conjectură Hardy-Littlewood Right_bar_bleue
Numarul mesajelor : 5405
Puncte : 31658
Data de inscriere : 22/03/2011

Sus In jos

A doua conjectură Hardy-Littlewood Empty Re: A doua conjectură Hardy-Littlewood

Mesaj Scris de curiosul la data de Lun 16 Ian 2017, 11:10

A doua conjectura H-L și anume, A doua conjectură Hardy-Littlewood Mimetex nu este tocmai echivalentă cu A doua conjectură Hardy-Littlewood Mimetex pentru că prima relație o implică pe a doua, însă nu găsesc totuși un raționament corect, deocamdată cel puțin, care să implice prima relație considerând adevărată a doua relație.

Mai jos, un raționament care arată cum rezultă a doua relație din prima.
Orice număr n>2 poate fi încadrat între două numere prime consecutive astfel încât A doua conjectură Hardy-Littlewood Mimetex. În acest fel putem încadra x și y în relațiile A doua conjectură Hardy-Littlewood Mimetex și A doua conjectură Hardy-Littlewood Mimetex .

De aici reultă că A doua conjectură Hardy-Littlewood Mimetex și implicit faptul că A doua conjectură Hardy-Littlewood Mimetex.

Dacă înlocuim A doua conjectură Hardy-Littlewood Mimetex și A doua conjectură Hardy-Littlewood Mimetex și considerând că relația A doua conjectură Hardy-Littlewood Mimetex este adevărată, ar însemna de asemenea că A doua conjectură Hardy-Littlewood Mimetex , iar înlocuind valorile de mai sus inegalitatea devine A doua conjectură Hardy-Littlewood Mimetex.

Însă i+j poate fi scris sub forma A doua conjectură Hardy-Littlewood Mimetex și înlocuind din nou se ajunge la A doua conjectură Hardy-Littlewood Mimetex ceea ce ar însemna evident că A doua conjectură Hardy-Littlewood Mimetex .

De aici se deduce faptul că dacă relația A doua conjectură Hardy-Littlewood Mimetex este adevărată, atunci este adevărată și relația A doua conjectură Hardy-Littlewood Mimetex.


curiosul
Foarte activ
Foarte activ

Mulțumit de forum :
A doua conjectură Hardy-Littlewood Left_bar_bleue10 / 1010 / 10A doua conjectură Hardy-Littlewood Right_bar_bleue
Numarul mesajelor : 5405
Puncte : 31658
Data de inscriere : 22/03/2011

Sus In jos

A doua conjectură Hardy-Littlewood Empty Re: A doua conjectură Hardy-Littlewood

Mesaj Scris de Continut sponsorizat


Continut sponsorizat


Sus In jos

Sus


 
Permisiunile acestui forum:
Nu puteti raspunde la subiectele acestui forum