Ultimele subiecte
» Ce anume "generează" legile fizice?Scris de CAdi Astazi la 15:57
» Dovezi ce atestă existența lui DUMNEZEU și că EL este UNICUL CREATOR al Universului
Scris de Forever_Man Astazi la 15:37
» TEORIA CONSPIRATIEI NU ESTE UN MIT...
Scris de CAdi Astazi la 12:13
» În ce tip de dovezi aveţi încredere deplină?
Scris de Forever_Man Ieri la 21:41
» Unde a ajuns stiinta ?
Scris de virgil Ieri la 18:02
» Ce fel de popor suntem
Scris de virgil Ieri la 17:40
» Eu sunt Dumnezeu - viitoarea mea carte in limba romana
Scris de Forever_Man Dum 24 Noi 2024, 09:16
» ChatGPT este din ce în ce mai receptiv
Scris de Meteorr Sam 23 Noi 2024, 21:12
» OZN in Romania
Scris de virgil Vin 15 Noi 2024, 19:26
» Carti sau documente de care avem nevoie
Scris de virgil Vin 15 Noi 2024, 09:50
» Fiinte deosebite.
Scris de virgil Vin 15 Noi 2024, 09:30
» Care și unde este "puntea" dintre lumea cuantică și cea newtoniană?
Scris de virgil Joi 14 Noi 2024, 18:44
» NEWTON
Scris de CAdi Mier 13 Noi 2024, 20:05
» New topic
Scris de ilasus Mar 12 Noi 2024, 11:06
» Pendulul
Scris de Vizitator Vin 08 Noi 2024, 15:14
» Laborator-sa construim impreuna
Scris de eugen Mier 06 Noi 2024, 10:59
» PROFILUL CERCETATORULUI...
Scris de eugen Mier 06 Noi 2024, 07:56
» Fenomene Electromagnetice
Scris de virgil Vin 01 Noi 2024, 19:11
» Sa mai auzim si de bine in Romania :
Scris de CAdi Vin 01 Noi 2024, 12:43
» How Self-Reference Builds the World - articol nou
Scris de No_name Mier 30 Oct 2024, 20:01
» Stanley A. Meyer - Hidrogen
Scris de eugen Lun 28 Oct 2024, 11:51
» Daci nemuritori
Scris de virgil Dum 27 Oct 2024, 20:34
» Axioma paralelelor
Scris de No_name Dum 27 Oct 2024, 14:59
» Relații dintre n și pₙ
Scris de No_name Dum 27 Oct 2024, 10:01
» Global warming is happening?
Scris de Meteorr Vin 25 Oct 2024, 23:06
» Atractia Universala
Scris de Meteorr Vin 25 Oct 2024, 23:03
» Despre credinţă şi religie
Scris de Dacu2 Mier 23 Oct 2024, 08:57
» Stiinta oficiala si stiinta neoficiala
Scris de CAdi Vin 18 Oct 2024, 12:50
» țara, legiunea, căpitanul!
Scris de CAdi Vin 18 Oct 2024, 12:37
» Grigorie Yavlinskii
Scris de CAdi Joi 17 Oct 2024, 23:49
Postări cu cele mai multe reacții ale lunii
» Mesaj de la virgil în În ce tip de dovezi aveţi încredere deplină? ( 2 )
» Mesaj de la CAdi în În ce tip de dovezi aveţi încredere deplină?
( 2 )
» Mesaj de la virgil în Ce anume "generează" legile fizice?
( 1 )
» Mesaj de la Abel Cavaşi în ChatGPT este din ce în ce mai receptiv
( 1 )
» Mesaj de la virgil în În ce tip de dovezi aveţi încredere deplină?
( 1 )
Subiectele cele mai vizionate
Subiectele cele mai active
Top postatori
virgil (12466) | ||||
CAdi (12404) | ||||
virgil_48 (11380) | ||||
Abel Cavaşi (7964) | ||||
gafiteanu (7617) | ||||
curiosul (6790) | ||||
Razvan (6183) | ||||
Pacalici (5571) | ||||
scanteitudorel (4989) | ||||
eugen (3970) |
Cei care creeaza cel mai des subiecte noi
Abel Cavaşi | ||||
Pacalici | ||||
CAdi | ||||
curiosul | ||||
Dacu | ||||
Razvan | ||||
virgil | ||||
meteor | ||||
gafiteanu | ||||
scanteitudorel |
Cei mai activi postatori ai lunii
virgil | ||||
No_name | ||||
CAdi | ||||
ilasus | ||||
Forever_Man | ||||
Dacu2 | ||||
Meteorr | ||||
eugen | ||||
Abel Cavaşi |
Spune şi altora
Cine este conectat?
În total sunt 27 utilizatori conectați: 0 Înregistrați, 0 Invizibil și 27 Vizitatori :: 1 Motor de căutareNici unul
Recordul de utilizatori conectați a fost de 181, Vin 26 Ian 2024, 01:57
Teoremele de incompletitudine ale lui Godel
2 participanți
Pagina 1 din 1
Teoremele de incompletitudine ale lui Godel
În cursul demersului meu de a creiona un sistem care sa elimine axiomele din fizica si matematica (grea intreprindere !), am ajuns la critica teoremelor de incompletitudine ale lui Godel.
Pentru asta, am nevoie si de parerea unora care folosesc notiunile cu preponderenta in limba engleza, pentru a putea intelege mai bine subiectul din perspectiva celor ce opereaza cu el, pentru a face o comparatie cu pozitia mea privitoare la acesta.
Astfel, eu am tradus cele doua teoreme dupa cum urmeaza:
Teorema 1 : (EN) "Any consistent formal system F within which a certain amount of elementary arithmetic can be carried out is incomplete; i.e., there are statements of the language of F which can neither be proved nor disproved in F." , pe care am tradus-o astfel :
Teorema 1 : (RO) "Orice sistem formal consistent F (propoziţii în limbaj formal ce constituie un sistem axiomatic) în interiorul căreia există o cantitate certă de elemente aritmetice, poate fi considerată incompletă, adică sunt propoziţii ale limbajului F, care nu pot fi nici demonstrate nici nedemonstrate în interiorul sistemului F."
Teorema 2 : (EN) "Assume F is a consistent formalized system which contains elementary arithmetic. Then F⊬Cons(F)." , pe care am tradus-o ca :
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conţine elemente de aritmetică elementară, atunci nu se poate demonstra consistenţa sa. F⊬Cons(F)."
Ce ma intereseaza sa stiu , este daca mi-au scapat nuante subtile ale limbii pe care sa le fi interpretat incorect !
Ma mai intereseaza care ar fi diferentele dintre cele doua, privitoare la domeniile de definire ale premiselor si rezultatelor.
Pentru asta, am nevoie si de parerea unora care folosesc notiunile cu preponderenta in limba engleza, pentru a putea intelege mai bine subiectul din perspectiva celor ce opereaza cu el, pentru a face o comparatie cu pozitia mea privitoare la acesta.
Astfel, eu am tradus cele doua teoreme dupa cum urmeaza:
Teorema 1 : (EN) "Any consistent formal system F within which a certain amount of elementary arithmetic can be carried out is incomplete; i.e., there are statements of the language of F which can neither be proved nor disproved in F." , pe care am tradus-o astfel :
Teorema 1 : (RO) "Orice sistem formal consistent F (propoziţii în limbaj formal ce constituie un sistem axiomatic) în interiorul căreia există o cantitate certă de elemente aritmetice, poate fi considerată incompletă, adică sunt propoziţii ale limbajului F, care nu pot fi nici demonstrate nici nedemonstrate în interiorul sistemului F."
Teorema 2 : (EN) "Assume F is a consistent formalized system which contains elementary arithmetic. Then F⊬Cons(F)." , pe care am tradus-o ca :
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conţine elemente de aritmetică elementară, atunci nu se poate demonstra consistenţa sa. F⊬Cons(F)."
Ce ma intereseaza sa stiu , este daca mi-au scapat nuante subtile ale limbii pe care sa le fi interpretat incorect !
Ma mai intereseaza care ar fi diferentele dintre cele doua, privitoare la domeniile de definire ale premiselor si rezultatelor.
_________________
N∃GATIV
Re: Teoremele de incompletitudine ale lui Godel
Scuză-mi intervenția, poate pare un pic nelalocul ei și nu are legătură cu ceea ce urmărești tu.
În primul rând, în subiectul acesta vrei să-ți corectezi engleza sau să verifici eventualele erori de raționament ale incompletitudinii lui Godel ?
Il lași pe Einstein și-l iei pe Godel la criticat ?
În fine, am spus asta pentru că reiese clar faptul că tot ai ceva cu aștia care și-au lăsat amprenta în istoria știinției.
Probabil că îți dorești același lucru, iar incapacitatatea ta se transformă în răzvrătire și critică.
Nu știu...zic și eu...
Mai departe, ceea ce mă interesează să punctez.
Bănuiesc că tu vrei să elimini axiomele de care vorbești pentru că folosindu-le pe acestea existente nu reușești, matematic, să reproduci complet realitatea fizică.
Probabil că tu te gândești, așa cum ai mai și spus pe alocuri, că formulând un alt sistem prin care interpretăm matematic realitatea, acela va fi capabil să o reproducă complet, până în cele mai mici detalii.
Aceasta nu poate fi adevărat, din punctul meu de vedere.
Pentru că acel nou sistem, chiar dacă diferit, va fi tot un sistem formal care va fi la rândul său incomplet.
Incompletitudinea lui Godel generalizează situația și funcționează pentru orice tip de sistem bazat pe axiome, sau altfel spus bazat pe un set de reguli considerate adevărate, deși nu pot fi demonstrate.
Încercând să construiești un nou sistem, de la zero, arhitectura lui va fi identică cu cea actuală.
Este absolut necesară fundamentarea sistemului pe un set de reguli, pe baza cărora să demonstrezi ce-ți mai trece prin cap ulterior.
Aspectul cheie din incompletitudinea lui Godel este acest set de reguli ale sistemului.
Ori în orice alt mod ai încerca să definești un sistem el va fi construit pe reguli considerate adevărate, dar imposibil de demonstrat.
Însăși ultima ta propoziție vorbește despre faptul că inconsistența se datorează fundamentului nedemonstrabil.
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conţine elemente de aritmetică elementară, atunci nu se poate demonstra consistenţa sa.
Pentru că este imposibil de demonstrat că nu se poate demonstra.
Ca să arăți că nu se poate demonstra este echivalent cu demonstrația însăși a valorii de adevăr.
În primul rând, în subiectul acesta vrei să-ți corectezi engleza sau să verifici eventualele erori de raționament ale incompletitudinii lui Godel ?
Il lași pe Einstein și-l iei pe Godel la criticat ?
În fine, am spus asta pentru că reiese clar faptul că tot ai ceva cu aștia care și-au lăsat amprenta în istoria știinției.
Probabil că îți dorești același lucru, iar incapacitatatea ta se transformă în răzvrătire și critică.
Nu știu...zic și eu...
Mai departe, ceea ce mă interesează să punctez.
În cursul demersului meu de a creiona un sistem care sa elimine axiomele din fizica si matematica (grea intreprindere !), am ajuns la critica teoremelor de incompletitudine ale lui Godel.
Bănuiesc că tu vrei să elimini axiomele de care vorbești pentru că folosindu-le pe acestea existente nu reușești, matematic, să reproduci complet realitatea fizică.
Probabil că tu te gândești, așa cum ai mai și spus pe alocuri, că formulând un alt sistem prin care interpretăm matematic realitatea, acela va fi capabil să o reproducă complet, până în cele mai mici detalii.
Aceasta nu poate fi adevărat, din punctul meu de vedere.
Pentru că acel nou sistem, chiar dacă diferit, va fi tot un sistem formal care va fi la rândul său incomplet.
Incompletitudinea lui Godel generalizează situația și funcționează pentru orice tip de sistem bazat pe axiome, sau altfel spus bazat pe un set de reguli considerate adevărate, deși nu pot fi demonstrate.
Încercând să construiești un nou sistem, de la zero, arhitectura lui va fi identică cu cea actuală.
Este absolut necesară fundamentarea sistemului pe un set de reguli, pe baza cărora să demonstrezi ce-ți mai trece prin cap ulterior.
Aspectul cheie din incompletitudinea lui Godel este acest set de reguli ale sistemului.
Ori în orice alt mod ai încerca să definești un sistem el va fi construit pe reguli considerate adevărate, dar imposibil de demonstrat.
Însăși ultima ta propoziție vorbește despre faptul că inconsistența se datorează fundamentului nedemonstrabil.
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conţine elemente de aritmetică elementară, atunci nu se poate demonstra consistenţa sa.
Pentru că este imposibil de demonstrat că nu se poate demonstra.
Ca să arăți că nu se poate demonstra este echivalent cu demonstrația însăși a valorii de adevăr.
curiosul- Banat temporar pentru comportamentul nepotrivit
- Mulţumit de forum : Numarul mesajelor : 6790
Puncte : 41563
Data de inscriere : 22/03/2011
Re: Teoremele de incompletitudine ale lui Godel
Si una si alta.curiosul a scris:Scuză-mi intervenția, poate pare un pic nelalocul ei și nu are legătură cu ceea ce urmărești tu.
În primul rând, în subiectul acesta vrei să-ți corectezi engleza sau să verifici eventualele erori de raționament ale incompletitudinii lui Godel ?
Exact asa. Cu Einstein m-am dumirit - aritmetica elementara. Godel are locul lui, dar nu asa de mare cum se presupune.curiosul a scris:Il lași pe Einstein și-l iei pe Godel la criticat ?
În fine, am spus asta pentru că reiese clar faptul că tot ai ceva cu aștia care și-au lăsat amprenta în istoria știinției.
Probabil că îți dorești același lucru, iar incapacitatatea ta se transformă în răzvrătire și critică.
Nu știu...zic și eu...
Amprenta pe care au last-o astia in stiinta este doar partiala. Daca eram in incapacitate de a-i critica, n-o mai faceam. Repet : nu sunt WoodyCAD ; stiu exact care-mi sunt limitele, oricum peste ale unora ce au gandit acum 100 de ani, din lipsa de informatie. Dar nici pâna la nivelul la care as fi dorit sa-mi fie limitele. Oricum, o contributie tot am sa aduc.
_________________
N∃GATIV
Re: Teoremele de incompletitudine ale lui Godel
Cam asa ceva.curiosul a scris:Bănuiesc că tu vrei să elimini axiomele de care vorbești pentru că folosindu-le pe acestea existente nu reușești, matematic, să reproduci complet realitatea fizică.
De ce nu poate fi adevarat ? mi se pare absurd. Tu pornesti de la ideea de a folosi aceleasi elemente ale sistemului. Nu te-ai gandit ca daca sunt ceva mai multe in realitate, problema se schimba si poate fi construit un sistem consistent ?curiosul a scris:Probabil că tu te gândești, așa cum ai mai și spus pe alocuri, că formulând un alt sistem prin care interpretăm matematic realitatea, acela va fi capabil să o reproducă complet, până în cele mai mici detalii.
Aceasta nu poate fi adevărat, din punctul meu de vedere.
Pentru că acel nou sistem, chiar dacă diferit, va fi tot un sistem formal care va fi la rândul său incomplet.
Da, pe reguli ce se determina reciproc, nu pe axiome. Axiomele nu pot fi determinate. Ideea nu este de a construi un sistem de la zero, ci de a-l completa pe cel actual. Nu vreau sa construiesc alt sistem bazat tot pe axiome. N-as rezolva nimic. Dupa ce-l rezolv pe Godel, trec iar la Elementele lui Euclid, pentru a le pune in ordine. Sa nu crezi ca ma screm atata chiar pentru un fleac. Nu vreau sa-mi iau titlul de doctor pe aritmetica. Oricum nu as mai avea ce face cu el acum, (sunt prea batrân), dar m-am gandit ca o noua orientare ar folosi si altora (si ma gandesc la noile generatii cand zic asta).curiosul a scris:Incompletitudinea lui Godel generalizează situația și funcționează pentru orice tip de sistem bazat pe axiome, sau altfel spus bazat pe un set de reguli considerate adevărate, deși nu pot fi demonstrate.
Încercând să construiești un nou sistem, de la zero, arhitectura lui va fi identică cu cea actuală.
Este absolut necesară fundamentarea sistemului pe un set de reguli, pe baza cărora să demonstrezi ce-ți mai trece prin cap ulterior.
Asta tine de principiul incertitudinii ce a fost enuntat de Heisenberg ca o regula, lucru ce a fost demonstrat mai tarziu prin 1995 de Folland și Sitaram, dar nu întâmplator a fost ridicat la rang de principiu. Din perspectiva sistemului meu, toate domeniile de demonstrabilitate sunt disponibile, împreuna cu regulile lor, deci demonstrabile.curiosul a scris:Aspectul cheie din incompletitudinea lui Godel este acest set de reguli ale sistemului.
Ori în orice alt mod ai încerca să definești un sistem el va fi construit pe reguli considerate adevărate, dar imposibil de demonstrat.
Inconsistenta tine de posibilitatea de demonstrare, drept pentru care apare notiunea de domeniu de demonstrabilitate. Eroarea de judecata lui Godel a fost " conţine elemente de aritmetică elementară", pe cand trebuia sa fie " conţine numai elemente de aritmetică elementară".curiosul a scris:Însăși ultima ta propoziție vorbește despre faptul că inconsistența se datorează fundamentului nedemonstrabil.
Teorema 2 : (RO) "Presupunând că F este un sistem formal consistent care conţine elemente de aritmetică elementară, atunci nu se poate demonstra consistenţa sa.
Pentru că este imposibil de demonstrat că nu se poate demonstra.
Ca să arăți că nu se poate demonstra este echivalent cu demonstrația însăși a valorii de adevăr.
De-asta am intrebat de nuantele de interpretare ale limbii engleze.
_________________
N∃GATIV
Pagina 1 din 1
Permisiunile acestui forum:
Nu puteti raspunde la subiectele acestui forum