Ultimele subiecte
» Ce anume "generează" legile fizice?Scris de Forever_Man Ieri la 23:49
» Dovezi ce atestă existența lui DUMNEZEU și că EL este UNICUL CREATOR al Universului
Scris de Forever_Man Ieri la 23:03
» Ce fel de popor suntem
Scris de eugen Ieri la 21:21
» Eu sunt Dumnezeu - viitoarea mea carte in limba romana
Scris de Forever_Man Ieri la 09:16
» ChatGPT este din ce în ce mai receptiv
Scris de Meteorr Sam 23 Noi 2024, 21:12
» În ce tip de dovezi aveţi încredere deplină?
Scris de Dacu2 Sam 23 Noi 2024, 15:18
» TEORIA CONSPIRATIEI NU ESTE UN MIT...
Scris de eugen Mar 19 Noi 2024, 21:57
» Unde a ajuns stiinta ?
Scris de virgil Sam 16 Noi 2024, 12:00
» OZN in Romania
Scris de virgil Vin 15 Noi 2024, 19:26
» Carti sau documente de care avem nevoie
Scris de virgil Vin 15 Noi 2024, 09:50
» Fiinte deosebite.
Scris de virgil Vin 15 Noi 2024, 09:30
» Care și unde este "puntea" dintre lumea cuantică și cea newtoniană?
Scris de virgil Joi 14 Noi 2024, 18:44
» NEWTON
Scris de CAdi Mier 13 Noi 2024, 20:05
» New topic
Scris de ilasus Mar 12 Noi 2024, 11:06
» Pendulul
Scris de Vizitator Vin 08 Noi 2024, 15:14
» Laborator-sa construim impreuna
Scris de eugen Mier 06 Noi 2024, 10:59
» PROFILUL CERCETATORULUI...
Scris de eugen Mier 06 Noi 2024, 07:56
» Fenomene Electromagnetice
Scris de virgil Vin 01 Noi 2024, 19:11
» Sa mai auzim si de bine in Romania :
Scris de CAdi Vin 01 Noi 2024, 12:43
» How Self-Reference Builds the World - articol nou
Scris de No_name Mier 30 Oct 2024, 20:01
» Stanley A. Meyer - Hidrogen
Scris de eugen Lun 28 Oct 2024, 11:51
» Daci nemuritori
Scris de virgil Dum 27 Oct 2024, 20:34
» Axioma paralelelor
Scris de No_name Dum 27 Oct 2024, 14:59
» Relații dintre n și pₙ
Scris de No_name Dum 27 Oct 2024, 10:01
» Global warming is happening?
Scris de Meteorr Vin 25 Oct 2024, 23:06
» Atractia Universala
Scris de Meteorr Vin 25 Oct 2024, 23:03
» Despre credinţă şi religie
Scris de Dacu2 Mier 23 Oct 2024, 08:57
» Stiinta oficiala si stiinta neoficiala
Scris de CAdi Vin 18 Oct 2024, 12:50
» țara, legiunea, căpitanul!
Scris de CAdi Vin 18 Oct 2024, 12:37
» Grigorie Yavlinskii
Scris de CAdi Joi 17 Oct 2024, 23:49
Postări cu cele mai multe reacții ale lunii
» Mesaj de la virgil în În ce tip de dovezi aveţi încredere deplină? ( 2 )
» Mesaj de la CAdi în În ce tip de dovezi aveţi încredere deplină?
( 2 )
» Mesaj de la Meteorr în Global warming is happening?
( 1 )
» Mesaj de la eugen în În ce tip de dovezi aveţi încredere deplină?
( 1 )
» Mesaj de la No_name în Care și unde este "puntea" dintre lumea cuantică și cea newtoniană?
( 1 )
Subiectele cele mai vizionate
Subiectele cele mai active
Top postatori
virgil (12460) | ||||
CAdi (12397) | ||||
virgil_48 (11380) | ||||
Abel Cavaşi (7964) | ||||
gafiteanu (7617) | ||||
curiosul (6790) | ||||
Razvan (6183) | ||||
Pacalici (5571) | ||||
scanteitudorel (4989) | ||||
eugen (3970) |
Cei care creeaza cel mai des subiecte noi
Abel Cavaşi | ||||
Pacalici | ||||
CAdi | ||||
curiosul | ||||
Dacu | ||||
Razvan | ||||
virgil | ||||
meteor | ||||
gafiteanu | ||||
scanteitudorel |
Cei mai activi postatori ai lunii
virgil | ||||
No_name | ||||
CAdi | ||||
ilasus | ||||
Forever_Man | ||||
Meteorr | ||||
Dacu2 | ||||
eugen | ||||
Abel Cavaşi |
Cei mai activi postatori ai saptamanii
Niciun utilizator |
Spune şi altora
Cine este conectat?
În total sunt 20 utilizatori conectați: 0 Înregistrați, 0 Invizibil și 20 Vizitatori :: 1 Motor de căutareNici unul
Recordul de utilizatori conectați a fost de 181, Vin 26 Ian 2024, 01:57
Subiecte similare
Teorema de recurenţă a formulelor lui Frenet
+8
curiosul
Razvan
omuldinluna
CAdi
george
WoodyCAD
mm
Abel Cavaşi
12 participanți
Pagina 4 din 4
Pagina 4 din 4 • 1, 2, 3, 4
Teorema de recurenţă a formulelor lui Frenet
Rezumarea primului mesaj :
Studiind formulele lui Frenet am ajuns la concluzia că acestea sunt recursive. Mai precis, folosind forma trigonometrică a formulelor lui Frenet (formă despre care puteţi găsi amănunte plictisitoare pe blogul meu), am demonstrat următoarea
Teoremă. Dacă există un triedru drept de ordinul n care satisface formulele lui Frenet de ordinul n scrise sub forma trigonometrică
,
atunci există încă un triedru drept de ordinul n+1
care satisface, la rândul său, formulele lui Frenet de ordinul n+1 scrise sub forma trigonometrică
,
,
unde si .
Demonstratie: Din relaţiile
si
avem că
,
deci .
Mai avem ,
de unde .
Derivăm acum versorii triedrului drept de ordinul n+1
şi obţinem
.
Înlocuind si , obţinem
.
Dar ştim că, din definiţia versorilor de ordin superior, avem
,
deci
.
Cum si , rezultă în final
,
ceea ce trebuia demonstrat.
Descoperirea "live" a acestei teoreme de recurenţă, precum şi o mulţime de consecinţe ale teoremei pot fi găsite pe forumul de astronomie în topicul "Formulele lui Frenet generale".
Cum vi se pare această teoremă? Nu întrevedeţi şi voi aici (ca şi mine) o eventuală conexiune profundă între mecanica clasica şi cea cuantică?
Studiind formulele lui Frenet am ajuns la concluzia că acestea sunt recursive. Mai precis, folosind forma trigonometrică a formulelor lui Frenet (formă despre care puteţi găsi amănunte plictisitoare pe blogul meu), am demonstrat următoarea
Teoremă. Dacă există un triedru drept de ordinul n care satisface formulele lui Frenet de ordinul n scrise sub forma trigonometrică
,
atunci există încă un triedru drept de ordinul n+1
care satisface, la rândul său, formulele lui Frenet de ordinul n+1 scrise sub forma trigonometrică
,
,
unde si .
Demonstratie: Din relaţiile
si
avem că
,
deci .
Mai avem ,
de unde .
Derivăm acum versorii triedrului drept de ordinul n+1
şi obţinem
.
Înlocuind si , obţinem
.
Dar ştim că, din definiţia versorilor de ordin superior, avem
,
deci
.
Cum si , rezultă în final
,
ceea ce trebuia demonstrat.
Descoperirea "live" a acestei teoreme de recurenţă, precum şi o mulţime de consecinţe ale teoremei pot fi găsite pe forumul de astronomie în topicul "Formulele lui Frenet generale".
Cum vi se pare această teoremă? Nu întrevedeţi şi voi aici (ca şi mine) o eventuală conexiune profundă între mecanica clasica şi cea cuantică?
Ultima editare efectuata de catre Abel Cavaşi in Vin 02 Dec 2011, 12:35, editata de 2 ori (Motiv : Am înlocuit "forkosh.dreamhost." cu "forkosh.".)
Re: Teorema de recurenţă a formulelor lui Frenet
Studiul geometriei este intrinsec legat de mișcare. Există chiar posibilitatea definirii unei curbe ca fiind „urma” lăsată de un punct în mișcare.
Nu înțeleg din ce adâncimi provine această întrebare. Mai bine ți-ai pune întrebări mai relevante.
Nu înțeleg din ce adâncimi provine această întrebare. Mai bine ți-ai pune întrebări mai relevante.
Re: Teorema de recurenţă a formulelor lui Frenet
Ce scriu mai jos consideri ca este relevant ?Abel Cavaşi a scris:Studiul geometriei este intrinsec legat de mișcare. Există chiar posibilitatea definirii unei curbe ca fiind „urma” lăsată de un punct în mișcare.
Nu înțeleg din ce adâncimi provine această întrebare. Mai bine ți-ai pune întrebări mai relevante.
Dupa atatea discutii cu privire la acest subiect, ar trebui sa
mentionezi intotdeauna daca este vorba despre o miscare
libera sau condusa. Adica dirijata sau influentata de factori
exteriori, de mediu sau de propulsie.
Ca sa stim despre ce discutam.
Fiindca o miscare condusa, poate lua intr-adevar orice
traiectorie, inclusiv cea elicoidala.
Dar geometria nu specifica aceasta diferenta.
virgil_48- Foarte activ
- Numarul mesajelor : 11380
Data de inscriere : 03/12/2013
Re: Teorema de recurenţă a formulelor lui Frenet
În ultimă instanță, toate mișcările din Univers sunt libere, căci sunt naturale (neartificiale). Impresia că noi putem împinge un corp este subiectivă (noi ne folosim de elemente existente deja în natură pentru a împinge corpul, noi doar dirijăm după dorință DIRECȚIA forțelor).
Așadar, ca să-ți răspund direct, întotdeauna mă voi referi la mișcările libere: tote mișcările libere (și nu există altfel de mișcări, în ultimă instanță) sunt elicoidale.
Așadar, ca să-ți răspund direct, întotdeauna mă voi referi la mișcările libere: tote mișcările libere (și nu există altfel de mișcări, în ultimă instanță) sunt elicoidale.
Pagina 4 din 4 • 1, 2, 3, 4
Subiecte similare
» Teorema de recurenta 1
» Triedrul ortogonal al lui Frenet şi traiectoria ortogonală
» Orice vector are un triedru Frenet
» Triedrul ortogonal al lui Frenet şi traiectoria ortogonală
» Orice vector are un triedru Frenet
Pagina 4 din 4
Permisiunile acestui forum:
Nu puteti raspunde la subiectele acestui forum